Predicting dispersal of auto-gyrating fruit in tropical trees: a case study from the Dipterocarpaceae
نویسندگان
چکیده
Seed dispersal governs the distribution of plant propagules in the landscape and hence forms the template on which density-dependent processes act. Dispersal is therefore a vital component of many species coexistence and forest dynamics models and is of applied value in understanding forest regeneration. Research on the processes that facilitate forest regeneration and restoration is given further weight in the context of widespread loss and degradation of tropical forests, and provides impetus to improve estimates of seed dispersal for tropical forest trees. South-East Asian lowland rainforests, which have been subject to severe degradation, are dominated by trees of the Dipterocarpaceae family which constitute over 40% of forest biomass. Dipterocarp dispersal is generally considered to be poor given their large, gyration-dispersed fruits. However, there is wide variability in fruit size and morphology which we hypothesize mechanistically underpins dispersal potential through the lift provided to seeds mediated by the wings. We explored experimentally how the ratio of fruit wing area to mass ("inverse wing loading," IWL) explains variation in seed dispersal kernels among 13 dipterocarp species by releasing fruit from a canopy tower. Horizontal seed dispersal distances increased with IWL, especially at high wind speeds. Seed dispersal of all species was predominantly local, with 90% of seed dispersing <10 m, although maximum dispersal distances varied widely among species. We present a generic seed dispersal model for dipterocarps based on attributes of seed morphology and provide modeled seed dispersal kernels for all dipterocarp species with IWLs of 1-50, representing 75% of species in Borneo.
منابع مشابه
Ecological Implications of a Flower Size/Number Trade-Off in Tropical Forest Trees
BACKGROUND In angiosperms, flower size commonly scales negatively with number. The ecological consequences of this trade-off for tropical trees remain poorly resolved, despite their potential importance for tropical forest conservation. We investigated the flower size number trade-off and its implications for fecundity in a sample of tree species from the Dipterocarpaceae on Borneo. METHODOLO...
متن کاملNon-Density Dependent Pollen Dispersal of Shorea maxwelliana (Dipterocarpaceae) Revealed by a Bayesian Mating Model Based on Paternity Analysis in Two Synchronized Flowering Seasons
Pollinator syndrome is one of the most important determinants regulating pollen dispersal in tropical tree species. It has been widely accepted that the reproduction of tropical forest species, especially dipterocarps that rely on insects with weak flight for their pollination, is positively density-dependent. However differences in pollinator syndrome should affect pollen dispersal patterns an...
متن کاملSoil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest trees
1 The relative importance of nicheand dispersal-mediated processes in structuring diverse tropical plant communities remains poorly understood. Here, we link mesoscale beta diversity to soil variation throughout a lowland Bornean watershed underlain by alluvium, sedimentary and granite parent materials ( c . 340 ha, 8–200 m a.s.l.). We test the hypothesis that species turnover across the habita...
متن کاملPhenology, fruit production and seed dispersal of Astrocaryum jauari (Arecaceae) in Amazonian black water floodplains.
Astrocaryum jauari Mart. (Arecaceae) is one of the commonest palm species occurring in nutritionally poor Amazonian black water floodplains. It is an emergent or subcanopy tree that grows on river banks and islands, with a wide distribution along the entire flooding gradient, tolerating flood durations between 30 and 340 days. The species is important for fish nutrition in the floodplains, and ...
متن کاملForests without primates: primate/plant codependency.
Detailed studies of primates and fruiting trees have illustrated that these groups of organisms are involved in a very complex set of interactions, with primates relying on fruiting trees as important food resources and fruiting trees relying on frugivores for seed dispersal. Human activities that influence either primate seed dispersal or fruit production have the potential of having unanticip...
متن کامل